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A generating function is a clothesline on which we hang up a sequence of
numbers for display.

— Herbert S. Wilf
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Prerequisites

I will try to make this talk accessible as possible

A highschool level of combinatorics and a calculus 2 level of
sequences and series are assumed

But the most important thing is understanding, so feel free to ask
questions during the talk
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What are generating functions?

A way to encode a sequence of numbers into a function

First used in the 1730s by Abraham de Moivre to solve a linear
recurrence

Made rigorous by studying the “ring of formal power series”

But we will ignore most formalities and just get to the interesting
applications
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Ordinary Generating Functions

Definition

Given a sequence {an}∞n=0, its ordinary generating function is the power
series

f (x) =
∞∑
n=0

anx
n

Example

Sequence 1, 1, 1, 1, . . . has ogf f (x) = 1 + x1 + x2 + x3 + · · · = 1
1−x

Example

Sequence 0, 1, 2, 3, . . . has ogf f (x) = x1 + 2x2 + 3x3 + · · ·
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Notation

Relating a sequence with its function

Given a sequence {an}∞n=0 with ordinary generating function f (x), we can
write

{an}∞n=0
ogf←→ f (x)

A function’s coefficient

If f (x) is a function with power series representation as
∑∞

n=0 anx
n, then

we use the following symbol for its coefficient.

[xn]f (x) = an
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Multiplying Two Ordinary Generating Functions

Suppose f (x) = a0 + a1x + a2x
2 + . . . and g(x) = b0 + b1x + b2x

2 + . . . .
Then,

(fg)(x) = a0b0 + (a0b1 + a1b1)x + (a0b2 + a1b1 + a2b2)x
2+

(a0b3 + a1b2 + a2b1 + a3b0)x
3 + . . .
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Multiplying Two Ordinary Generating Functions

The Cauchy Product

If f (x)
ogf←→ {an}∞n=0 and g(x)

ogf←→ {bn}∞n=0, then

(fg)(x)
ogf←→

{ n∑
k=0

akbn−k

}∞

n=0

.

Or alternatively,

[xn]fg(x) =
n∑

k=0

akan−k .
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A Fruit Counting Example

We want to make a fruit basket with 11 total fruit with:

2 or more oranges

3 or more odd count strawberries

either 3 or 4 watermelons

We can use generating functions coefficients to indicate whether or not we
can have a certain number of fruits. For example, because we can only use
even 2 or more oranges, our sequence is 0, 0, 1, 1, 1 . . . .

f (x) = x2 + x3 + x4 + . . . g(x) = x3 + x5 + x7 + . . . h(x) = x3 + x4
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A Fruit Counting Example

We can multiply all the equations together to a generating function where
[xn](fgh)(x) represents the number of fruit baskets with n fruit. When
multiplying the functions, for any dkx

k in the final function, we are adding
up xk a total of dk times because all the coefficients are 1. Hence, we are
counting the number of ways to add up to k by the ways we can get
xαxβxγ = xk .

But of course multiplying power series is hard, so we write
the closed form of the geometric series (without caring about
convergence. . . )

f (x) =
x2

1− x
g(x) =

x

1− x2
h(x) = x3 + x4

(fgh)(x) =
x2

1− x
· x

1− x2
· (x3 + x4)

=
x6

(1− x)2
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A Fruit Counting Example

Since we are interested in a basket with 11 fruit, we want [x11](fgh)(x).
How do we find this? Can use any method you want to find the Taylor
series coefficient.

[x11](fgh)(x) = 6
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An Integer Partitions Example

An integer partition of a natural number n is a way of writing n as a sum
of positive integers.
Let Pn be the number of distinct integer partitions of n. Starting with
p0 = 1, the first few numbers of the sequence are

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, . . .
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An Integer Partitions Example

Definition

Pn,distinct is the number of integer partitions with distinct summands in its
sum.

Definition

Pn,odd is the number of integer partitions with an odd number of
summands in its sum.

Pn,distinct = Pn,odd for all n

We will show this by first calculating the generating functions for the
sequences separately, then showing the generating functions are equal.
When generating functions are equal, the sequences are equal.
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An Integer Partitions Example

We examine how to construct the ogf for integers without restrictions, we
later see that adding restrictions is easy from this starting point.

{pn}∞n=0
ogf←→

∞∑
n=0

pnx
n

= (1 + x1 + x1+1 + . . . )(1 + x2 + x2+2 + . . . )(1 + x3 + x3+3 + . . . ) . . .

=

(
1

1− x

)(
1

1− x2

)(
1

1− x3

)
. . .

In the first factor, 1 counts partitions using zero 1’s, x1 counts using one
1’s, x1+1 counts using two 1’s, etc.
In the second factor, 1 counts partitions using zero 2’s, x1 counts using
one 2’s, x2+2 counts using two 2’s, etc.
So on and so forth.
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An Integer Partitions Example

{pn,distinct}∞n=0
ogf←→ (1 + x)(1 + x2)(1 + x3) . . .

= (1 + x)
(1− x)

(1− x)
(1 + x2)

(1− x2)

(1− x2)
(1 + x3)

(1− x3)

(1− x3)
. . .

=
(1− x2)(1− x4)(1− x6) . . .

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) . . .

=

(
1

1− x

)(
1

1− x3

)(
1

1− x5

)
ogf←→ {pn,odd}∞n=0

Jason Li (UofT) Generating Functions CUMC 2023 16 / 28



Exponential Generating Functions

Definition

Given a sequence {an}∞n=0, its exponential generating function is the power
series

f (x) =
∞∑
n=0

an
n!

xn.

We also write f (x)
egf←→ {an}∞n=0.

Why?

sometimes ordinary generating functions do not converge to a nice
analytical function

multiplying or composing exponential generating functions can
sometimes give nicer functions to work with
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Exponential Generating Functions

Example

The number of n bit binary strings is given by sequence 20, 21, 22, 23, . . . .
The exponential generating function f (x) of the sequence is

f (x) = 20
x0

0!
+ 20

x1

1!
+ 21

x2

2!
+ . . .

=
∞∑
k=0

2n
xn

n!

=
∞∑
k=0

(2x)n

n!

= e2x

So we get a nice closed form. (No nice closed form can be said for this
sequence with ogf’s.)
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Exponential Generating Functions

Suppose f (x) = a0 + a1x + a2
2! x

2 + . . . and g(x) = b0 + b1x + b2
2! x

2 + . . . .
We get, (fg)(x) = c0 + c1x + c2x

2 + . . . .

ck =
n∑

k=0

ak
k!

bn−k

(n − k!)

=
1

n!

( n∑
k=0

n!

k!(n − k)!
akbn−k

)

=
1

n!

( n∑
k=0

(
n

k

)
akbn−k

)
Because we divide the sequence by n! in egf’s, we have the corresponding
sequence being the value in the parentheses.
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Exponential Generating Functions

Multiplicative Property

If f (x)
egf←→ {an}∞n=0 and g(x)

egf←→ {bn}∞n=0, then

(fg)(x)
egf←→

{ n∑
k=0

(
n

k

)
akbn−k

}∞

n=0

.
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A String Derangement Example

Definition

Given a string of n characters, a derangement of the string is a
permutation of the string where there are no fixed points.

i.e If we are given string S , a derangement of S is a permutation T of S
such that S [i ] ̸= T [i ] for all i .

How many derangements Dn are there of a string of n unique letters?
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A String Derangement Example

Let {Dn}∞n=0
egf←→ D(x). The number of permutations of n letters with

exactly k fixed points is Dn−k . For a fixed k , there are
(n
k

)
ways to pick

the fixed points. Hence, there are
(n
k

)
Dn−k permutations of n letters with

k fixed points.

We sum over all k to get a possible permutations. Another way to count
all possible permutations of n letters is n!. Hence,

n! =
n∑

k=0

(
n

k

)
Dn−k .
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A String Derangement Example

n! =
n∑

k=0

(
n

k

)
1 · Dn−k .

We multiply a 1 in to make application of the product rule more clear.
Recalling the product rule, we see that RHS corresponds to the product of
the egf’s for the sequences 1, 1, 1, . . . and D0,D1,D2, . . . . The two egf’s
are ex and D(x) respectively.

Looking at the LHS, the sequence 0!, 1!, 2!, 3!, . . . has egf
1 + x + x2 + x3 + · · · = 1

1−x . Hence, we get the equality,

1

1− x
= exD(x)
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A String Derangement Example

Solving the equation, D(x) = e−x 1
1−x .

D(x) = e−x 1

1− x

= (1− x +
x2

2!
− x3

3!
+ . . . )(1 + x + x2 + x3 + . . . )

= 1 + (1− 1 +
1

2!
)x2 + (1− 1 +

1

2!
− 1

3!
)x3 + . . .

In general, [xn]e−x 1
1−x = 1

0! −
1
1! +

1
2! −

1
3! + . . . (−1)n 1

n! .
Hence, we get

Dn = n!

( n∑
k=0

(−1)k 1

k!

)
.
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Dirichlet Generating Functions

Definition

Given a sequence {an}∞n=1, its Dirichlet generating function is the power
series

f (s) =
∞∑
n=1

an
ns

.

We also write f (s)
dgf←→ {an}∞n=1.
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Dirichlet Generating Functions

We will now briefly introduce a powerful tool used in analytic number
theory.

Example

The Dirichlet generating function for the sequence 1, 1, 1, . . . is the
Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
.

Example

The Dirichlet generating function for the sequence µ(1), µ(2), µ(3), . . . is
the reciprocal of the Riemann zeta functions. Where µ is the multiplicative
Möbius function.

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
.
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Dirichlet Generating Functions

Multiplicative Property

If f (s)
dgf←→ {an}∞n=1 and g(s)

dgf←→ {an}∞n=1, then

(fg)(s)
dgf←→

{ ∞∑
k=1
k|n

akb n
k

}∞

n=1

.
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Questions
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