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1. INTRODUCTION

Topological data analysis allows us to precisely determine the geometric properties of a finite point
cloud data set of a metric space. The overall structure of the data pipeline is given a data set, we first
construct various simplicial complexes on the data set using different parameters to find which parameters
best capture the important features of the data. This idea is made rigorous by persistent homology. For
the simplicial complexes that best capture the features we want to analyze, we then analyze the simplicial
complex using the tools of algebraic topology. Topological data helps solve two difficult problems that
frequently arise in data analysis. Topological data analysis, inter alia, revealing geometric aspects of noisy
and potentially incomplete data even if the data is of very high dimension.

2. SIMPLICIAL COMPLEXES

We will assume the data sets we are working with are finite subsets of Rn. However, the theory discussed
can be generalized to any metric space in place of Rn.

Simplicial complexes are a way to give the data set an easy to work with topology. They are generally
easy to construct on a finite set of a metric space. Furthermore, homology groups, the main tool used
to analyze the simplicial complexes, are relatively easy to compute on simplicial complexes because of
their purely combinatorial nature. To define what simplicial complexes are, we first begin with defining a
K-simplex.

Definition 2.1. K-Simplex: Let K +1 be a set of points {x1, . . . , xK+1} ⊆ Rn, such that the points are all
affinely independent. Then the K-simple determined by those set of points, denoted by σ, is

σ = {θ1x1 + · · ·+ θk+1xk+1|
k+1∑
i=1

θi = 1 and θi ≥ 0 for all i}

We also define the face of a simplex to be any sub-simplex generated by a non-empty subset of the K+1
points.

We can think of a K-simplex as a K dimensional generalization of a 2-d triangle or a 3-d pyramid with
the vertex set being the set of K+1 points. We require the points to be affinely independent so that no more
than 2 points are in the same 1-d subspace.

Definition 2.2. Simplicial Complex: Let K be a set of simplices of potentially varying dimension. K is a
simplicial complex if it satisfies the following conditions:

(1) every face of a simplex σ ∈ K is also in K
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(2) given σ1, σ2 ∈ K and σ1 ∩ σ2 6= ∅, the intersection is a face of both σ1 and σ2

Now we give some examples of different constructions of simplicial complexes.

Definition 2.3. Vietoris-Rips Complex: Given a set of finite points X ⊆ R and an ε > 0, define the
simplicial complex Ripsε(X) as follows. K-simplex σ ∈ Ripsε(X) if and only if the distance between two
furthest points in σ is less or equal to ε. This distance is sometimes also called the diameter of the simplex.

An important property of Vietoris-Rips Complexes, and many simplicial complexes in general, is that
they preserve the overall geometric features of the set they are constructed from. This is explored in greater
detail in [1].

Definition 2.4. C̆ech Complex: Given a finite set of points X ⊆ R and an ε > 0, define the simplicial
complex C̆echε(X) as follows. Let X be the vertex set. For σ ⊆ X, where σ is a simplicial complex,
σ ∈ C̆echε(X) if and only if the set of Bε(x) as x ∈ σ varies has a non-empty intersection.

Proposition 2.5. Let X be a finite point cloud of a metric space and ε > 0. Then Ripsε(X) and C̆echε(X)
are simplicial complexes.

Proposition 2.6. Let ε > 0 and X ⊆ R be a finite set of points, then

Ripsε(X) ⊆ C̆echε(X) ⊆ Rips2ε(X)

Proof. To show Ripsε(X) ⊆ C̆echε(X), let σ ∈ Ripsε(X) be a simplex. Then for any x1, x2 ∈ σ we have
and |x1 − x2| < ε.

Consider balls Bε(x1) and Bε(x2). Since |x1 − x2| < ε then Bε(x1) ∩ Bε(x2) 6= ∅. Since x1 and x2 are
arbitrary, it follows by induction that

⋂
xi∈σBε(xi) 6= ∅ since σ is finite. Hence the first inclusion is proven.

To show C̆echε(X) ⊆ Rips2ε(X), let σ′ ∈ C̆echε(X). Then the intersection of all the ε-balls around the
points in σ is non-empty. Thus none of the balls have an empty intersection. So given any two points
y1, y2 ∈ σ′ and y3 ∈ Bε(y1) ∩ Bε(y2), we have |y1 − y3| + |y3 − y2| < 2ε and by the triangle inequity,
|y1−y2| < 2ε. Since the y1 and y2 are arbitrary, it follows that σ ∈ Rips2ε(X). Hence the second inclusion
is proven. �

The Vietoris-Rips complex and the C̆ech complex construct simplicial complexes from points in Rn.
Now we will introduce a more flexible way to construct simplicial complexes. A nerve is a simplicial
complex determined uniquely after being given a topological space and a cover of the topological space.
It turns out a C̆ech complex is a special case of this more general construction with the topological space
being some subset of Rn contain the data and the cover being the ε-balls around each data point.

Definition 2.7. Nerve: Given an open cover U = {Ui}i∈Λ of a topological space X , the nerve of U
denoted C(U), is the simplicial complex with vertices Ui and

σ = [Ui1 , . . . , Uik ] ∈ C(U) if and only if
k⋂
j=0

Ui 6= ∅

Proposition 2.8. A C̆ech complex is a nerve

Proof. Give C̆echε(X) ⊆ Rn the subspace topology. We know that U = {Bε(xi)}xi∈X is a cover of the
C̆ech complex. It is indeed a cover is because the C̆ech complex is defined in a way such that a simplex
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FIGURE 1. Nerve of a cover of points in R2. Image taken from [2]

is in the complex if and only if it is in one of the balls (since otherwise it would not be in a non-empty
intersection). It follows that C(U) = C̆echε(X). �

The nerve theorem is a important result connecting the simplicial complexes to the data sets.To state the
theorem we first have to introduce the notion of contractible spaces. Contractible spaces are some of the
simplest spaces because they are “almost” a single point, where “almost” means homotopy equivalent.

Definition 2.9. Contractible: Let X be a topological space. X is said to be contractible if it is homotopy
equivalent to a point. Equivalently, X is said to be contractible if the identity map on X is null homotopic.

Proposition 2.10. The two definitions of a contractible space are indeed equivalent.

Proof. Suppose X is homotopic equivalent to p = {x}. Let f : X → p, g : p→ X such that f ◦ g ' idp
and g ◦ f ' idX . Since g ◦ f(x) = g(f(x)) = g(p) = cxo where cxo the constant map to a xo. Hence
idX ' xo so the identity on X is null homotopic.

Suppose that the identity on X is null homotopic so idX ' cxo . Then if f : X → p, g : p → X , we
have g ◦ f = cx1 for some x1. Since cxo ' (cx1 = g ◦ f) since constant loops are homotopic, we have
idX ' g ◦ f .

We f ◦ g = cp so it follows f ◦ g ' (cp = idp). Thus X is homotopy equivalent to a point and the two
definitions are indeed equivalent.

�

Definition 2.11. Good Open Cover: An open cover U = {Ui}i∈Λ of topological space X is called a good
open cover if every Ui is contractible and every non-empty finite intersection of Ui is contractible.

Theorem 2.12. Nerve Theorem: Let U be a good open cover of topological space X . Then it’s nerve
C(U) and X are homotopy equivalent.

Corollary 2.13. Let X ⊆ Rn be a finite set of points, and fix ε > 0. Then there exists the following
homotopy equivalence

C̆echε(X) '
⋃
x∈X

Bε(x)

Proof. C̆echε(X) is a nerve with the cover being the ε-balls around each x ∈ X. Balls in Rn are homotopic
equivalent to a point thus they are contractible as well as their finite interaction. Thus, the balls are a good
cover of their union. Apply the nerve theorem and the result immediately follows. �
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FIGURE 2. Visual depiction of the mapper algorithm. Image taken from [2]

Due to their homotopy equivalence, the C̆ech complex behaves exactly like the union of ε-balls, a
subset of Rn. In general, the nerve theorem guarantees us that all that the tools of algebraic topology we
are going to use, can indeed be used. This is because the topological features we discover from analyzing
the simplicial complex of a data set can be transferred back to the actual data set via homotopy. This is
because many concepts in algebraic topology, are homotopy invariants. Thus, they are preserved under
homotopy equivalence. For example, homotopic equivalent topological spaces have isomorphic homology
groups. Hence, a simplicial complex of a data set being the homotopic invariant to the data set is important
because homotopy preserves many algebraic topology concepts.

3. THE MAPPER ALGORITHM

The mapper algorithm was originally formulated by Gurjeet Singh, Facundo Mémoli and Gunnar Carls-
son in 2007 in their joint paper. The mapper algorithm is another way to construct an simplicial complex
out of a data set X of a metric space. Specifically, the mapper algorithm will take a cover of a Rn and
create a nerve out of the refined pull back cover of some continuous map f : X → Rn, sometimes called
the filter or lens function. Following the earlier motif, we apply the nerve theorem realizing that the nerve
of the pullback cover and X are homotopy equivalent.

Definition 3.1. Pullback Cover: Let X be a topological space and f : X → Rn a continuous map.
If U = {Ui}i∈Λ a cover of Rn. Then the pullback cover of X induced by (f,U) is {f−1(Ui)}i∈Λ. The
refined pullback is {f−1Ui)

′}i∈Λ′ where f−1(Ui)
′ ⊆ f−1(Uj), for some j, is a connected component of the

pullback cover.

Proposition 3.2. The refined pullback cover is a refinement of the regular pullback cover.

Now we have the prerequisites needed to define the mapper algorithm.

Definition 3.3. Mapper algorithm: Let X be a finite set of data points of a metric space, and let f : X→
Rn a continuous map with U = {Ui}i∈Λ being a cover of f(X).

Then compute the refined pullback cover U ′ = {f−1(Ui)′}i∈Λ′ induced by (f,U). Then construct the
output of the mapper algorithm, which is the nerve C(U).

Natural questions arise regarding how to choose a function f : X → Rn and how to choose a cover U
of f(X). The answers are discussed in detail in [2] but here is a summary.
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Choice of f : The choice of f greatly changes the output of the function. The appropriate choice of f
depends on the features we want to highlight in the data.

If we do not have any specific knowledge of the data, standard choices of f include the centrality
function f(x) =

∑
x∈X d(x, y) and the eccentricity function f(x) = maxy∈Xd(x, y), where d is the metric

of the space the data is in.

Choice of U: The standard choice of cover U of f(X) is of regularly spaced intervals of some length
r > 0. r is sometimes called the resolution of the cover. The percentage of overlap of these spaced
intervals is sometimes called the gain of the cover. An interesting result is that when the gain is greater
than 50%, the nerve produced by the mapper algorithm is a graph. Resolution and gain are the two of the
most important parameters regarding this standard cover of f(X).

In general, the output of the mapper algorithm varies greatly with choice of U . The strategy employed
to counteract this problem is to consider the various outputs of the mapper algorithm as the parameters of
the cover change. When the output stays constant during a large change in the parameters, we can consider
nerve to be capturing the main structure of the data. This strategy helps us distinguish between when a
nerve is capturing the noise of the data and when it is capturing the main features of the data. This idea is
further explored in the application of persistent homology.

4. PERSISTENT HOMOLOGY AND APPLICATIONS

Homology groups, loosely speaking, are a way to detect and classify holes in a topological space similar
to homotopy groups. The major relevant difference is, however, that homology groups are typically much
easier to compute than homotopy groups. Homology groups of a simplicial complex are especially easy
to compute. In the context of this paper, we will assume that the computation of homology is already
understood.

To motivate persistent homology, a specific way of applying homology, consider finite data set X ⊆ S1.
When we construct the C̆echε(X) we want to choose ε large enough so that the complex is connected.
However, we also want to choose ε small enough so that there are not any 1-simplicies “crisscrossing”
hole in the center of S1. In essence, we want to choose ε such that the topological features of the simplicial
complex are equivalent to the topological features of the data set. A priori, how do we choose such an ε?
The answer is persistent homology.

Steps in Persistent Homology:

(1) Choose a kth-homology group to analyze.
(2) Choose some interval [a, b] ⊆ R
(3) Vary ε from a to b constructing a simplicial complex with that ε on the data set. Record the

kth-homology group as ε varies. This change in the homology groups is usually visualized by
a barcode diagram. A barcode diagram is a plot with the horizontal axis being the changing
parameters and the vertical axis being homology groups or homology generators.

(4) Conclude that the homology groups that stayed constant for the large ranges of ε encode the major
features of the data.

Using persistent homology we can choose appropriate ε to construct our simplicial complexes. Now we
know the homology group(s) that best capture the features of the data set.
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FIGURE 3. Barcode diagram of the first to third homology group for a data set. Image
taken from [4]

As a final note, we will give an example of topological feature we can analyze from the homology
group of a simplex with a well choosen ε. Geometrically, Betti numbers, with the i-th Betti number being
denoted bi, are the number of n-dimension holes in a topological space. Formally, bi is defined as the rank
of the ith-homology group.

For example, b0 is the number of connected components of the topological space. b1 is the number of
one-dimensional “circular holes” in the topological space. b2 is the number of two-dimensional holes in
the topological space. i.e the number of “voids” or “cavities”.

Betti numbers are just one example of a concept from algebraic topology that be applied to reveal the
geometric and topological features of a finite data set.

5. CONCLUSION

The data pipeline explored is that once given a data set, we first construct the appropriate simplicial
complex(exs) using persistent homology. Then using the computed homology groups, we can analyze
the geometric and topological features of a simplicial complex, and in turn, reveal the geometric and
topological features of the data set, which through other methods, may be difficult to detect.
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