1-3

Question: Show that (𝛼𝛽)πœ† = 𝛼(π›½πœ†) for all 𝛼, 𝛽, πœ† ∈ 𝐂.

Answer: Let $\alpha = a + ib$, $\beta = c + id$ and $\lambda = e + if$ be given.

Then, $$ (\alpha + \beta)\lambda = ((a + ib)(c + id))(e + if) = (ac - bd) + i(ad + bc))(e + if) = (ace - bde - bdf + bcf) + i(ade + bce + bcf + bde) = (a + ib)((ce - df) + i(de + cf)) = \alpha (\beta \lambda) $$

Where the middle equalites come from the properties of $\mathbb{R}$.